Instead of randomly or exhaustively iterating through combinations of algorithms and parameters, we can use Bayesian Optimization libraries to build up an in-memory approximation to the process we want to fine-tune. We can then make a our selections on prior knowledge.
Read moreAndrew Kenworthy
Time-to-event (TTE) use-cases crop up in many places across industries. Some examples would be: the prediction of customer churn (the sales domain), remaining-useful-life or time-to-failure TTF (predictive maintenance), or anomaly detection (machine monitoring). Some events are difficult to predict as they are hidden. We can instead try to look for interim events to improve prediction accuracy.
Read moreTime-to-event (TTE) use-cases crop up in many places across industries. Some examples would be: the prediction of customer churn (the sales domain), remaining-useful-life or time-to-failure TTF (predictive maintenance), or anomaly detection (machine monitoring).Some events are difficult to predict as they are hidden. We can instead try to look for interim events to improve prediction accuracy.
Read more